gmnl - Multinomial Logit Models with Random Parameters
An implementation of maximum simulated likelihood method for the estimation of multinomial logit models with random coefficients as presented by Sarrias and Daziano (2017) <doi:10.18637/jss.v079.i02>. Specifically, it allows estimating models with continuous heterogeneity such as the mixed multinomial logit and the generalized multinomial logit. It also allows estimating models with discrete heterogeneity such as the latent class and the mixed-mixed multinomial logit model.
Last updated 3 years ago
4.11 score 4 stars 50 scripts 1.6k downloadsRchoice - Discrete Choice (Binary, Poisson and Ordered) Models with Random Parameters
An implementation of simulated maximum likelihood method for the estimation of Binary (Probit and Logit), Ordered (Probit and Logit) and Poisson models with random parameters for cross-sectional and longitudinal data as presented in Sarrias (2016) <doi:10.18637/jss.v074.i10>.
Last updated 2 years ago
3.92 score 4 stars 34 scripts 1.2k downloads